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Working with Svante is easy ....
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Some Definitions

String Complexity of a single sequence is the number of distinct substrings.

Throughout, we write X for the string and denote by 1(X) the set of distinct
substrings of X over alphabet A.

Example. If X = aabaa, tThen
I(X) ={e,a,b,aa,ab, ba, aab, aba, baa, aaba, abaa, aabaa},
and |I(X)| = 12. Butif X = aaaaa, then
I(X) = {e, a,aa, aaa, aaaa, aaaaa},
and |I(X)| = 6.

The string complexity is the cardinality of I(X) and we study here the
average string complexity.

E[II(X)]] = > PX)I(X)].

XeAn



Suffix Trees and String Complexity
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Non-compact suffix trie for X = abaababa and string complexity 1(X) = 24.
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String Complexity = # infernal nodes in a non-compact suffix tree.



Some Simple Facts

Let O(w) denote the number of times that the word w occurs in X. Then

[I(X)] = > min{l, O(w)}.

weA*

Since between any two positions in X there is one and only one substring:

_ (X[ +D[X]
Z O(w) = 5 :

weA*

Hence

X 1) X
(X1 + DIXT >~ max{0, O(w) — 1}.
2 weA*
Define: C,:=E[[I(X)] | |X]|=mn] Then

(X)) =

Cn:(n21)n_

> D> (k=1)P(Ou(w) = k).

weA* k>2

We need to study probabilistically O,,(w): that is:

number of w occurrences in a text X generated a probabilistic source.
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Some Results

Last expression allows us to write

c, = 21)” + E[S,] — E[L,)]

where E[S, ] and E[L,| are, respectively, the average size and path length
in the associated (compact) suffix trees.

We know that

B[S, = +(n+U(logn)) + o(n),
E[L,] = = lzg W Ws(log n) + o(n),

where W(logn) and W,y(logn) are periodic functions (when the log p,.
a € A are rationdlly related), and where h is the enfropy rate. Therefore,

_ (n+ 1)n

Chn
2

- %(logn — 1+ Qo(logn) + o(1))

where Qo (x) is a periodic function.



Theorem from 2004 Proved with Bare-Hands

In 2004 Svante, Stefano and | published the first result of this kind for a
symmetric memoryless source (all symbol probabilities are the same).

Theorem 1 (Janson, Lonardi, W.S., 2004). Let C,, be the string complexity for
an unbiased memoryless source over alphabet A. Then

E(C,) = <n ;' 1) —nlog) 4 n—|—< -+ W + p1a;(log) 4 n)) n+0(y/nlogn)

where ~v =~ 0.577 is Euler’s consfant and
1 2735 \ o
Tr) = — 't —1-— e "IT
) = i 2 (1 57)

is a continuous function with period 1. |4 (x)| Is very small for small | A|:
[p2(2)] < 2-1077, |@s(z)| < 51077 [pa(z)] < 3-107"
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Joint String Complexity

For X and Y, let J(X,Y) be the set of common words between X and Y.

The joint string complexity is
[J(X,Y)| = [I(X) N I(Y)

Example. If X = aabaa and Y = abbba,then J(X,Y) = {¢, a, b, ab, ba}.

Goal. Estimate
Jnm = E[[J(X,Y)]]

when | X| =nand |Y| = m.



Joint String Complexity

For X and Y, let J(X,Y) be the set of common words between X and Y.

The joint string complexity is
[J(X,Y)| = [I(X) N I(Y)]

Example. If X = aabaa and Y = abbba,then J(X,Y) = {¢, a, b, ab, ba}.

Goal. Estimate
Jnm = B[ J(X,Y)]]
when | X| = nand |Y| = m.

Some Observations. For any word w € A*

[J(X,Y)| = D min{l,Ox(w)} - min{1, Oy (w)}.

weA*

When | X| = nand |Y| = m, we have

Jom =BIJX, V) —1= 3 P(OL(w) > 1)P(O2(w) > 1)
weA*—{e}

where O! (w) is the number of w-occurrences in a string of generated by
source: = 1,2 (i.e., X and Y) which we assume to be memoryless sources.



Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Q' (w) be the number of strings for which w is a prefix when the n strings
are generated by a source i = 1, 2 define

Cnm = Z P(qum(w) > 1)P(an(w) > 1)
weA*—{e}

Theorem 2. There exists e > 0 such that
Jnm — Cpm = O(min{n, m} )

for large n.



Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Q' (w) be the number of strings for which w is a prefix when the n strings
are generated by a source i = 1, 2 define

Com = >, P(Q,(w) > 1)P(Q, (w) > 1)
weA*—{e}

Theorem 2. There exists e > 0 such that
Jnm — Cpm = O(min{n, m} )
for large n.

Recurrence for C,, ,,

Crm =143 3> (1) Pr(@) (1 = Pi(@)" " (7)) Pa(a)’ (1 = Pa(@))"™ “Ci

a€A k>0

with Co.m = Cho = 0.



Generating Functions, Mellin Transform, DePoissonization . ..

Poisson Transform. The Poisson transform C'(z1, z2) of C,, , IS

21 %y o122

C'(21722) — Z Cnm

| |
n,m>0 T

which becomes the functional equation after summing up the recurrence:

C(z1,22) = (1 —e "H)(1 —e *2) + Z C (Pi(a)z1, Pa(a)z2).
acA

Clearly, n!m!C,, ,, = [27][25']C (21, z2)e1772,
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Poisson Transform. The Poisson transform C'(z1, z2) of C), ., IS

212y oA

C'(21722) — Z Cnm

| l
n,m>0 T

which becomes the functional equation after summing up the recurrence:

C(z1,22) = (1 —e "H(1 —e ™2) + Z C (P1(a)z1, Pa(a)zs).
acA

Clearly, n'm!C,, ,, = [27][25']C (21, z2)e1772,

Mellin Transform. Two dimensional Mellin fransform is defined as
C*(s1,82) = / / C(z1, z2)z11 1z;2 1dz1dz2.

From the above functional equation we find for —2 < R(s;) < —1

) B 1 S1 S92 §182
C"(s1,52) = ['(s1)[(s2) (H(S1, 52) * H(—1, s5) " H(s1,—1) " H(—-1, —1)>

where the kernel is defined as

H(s1,82) = 1= > (Pi(a)) "H(Pa(a)) "2

acA



Finding C,, ,,

Here we only consider m = nand z; = 2z, = z.

To recover C,, ,, we first find the inverse Mellin

1
C(z,z) = — > / / C*(s1,52)z "1 "2dsidss
(207) Jr(s1)=c1 JR(s9)=c;

which turns out to be

2
0(27 Z) _ (L) / / F(Sl)F(82)2_81_82d81d82 + O(Z_M),
2um R(sp)=p1 J R(sg)=py H (51, 52)

forany M > 0 as z — oo in a cone around the real axis.

The final step to recover
Cpm ~ C(n,n)

is to apply the two-dimensional depoissonization.



Main Results

Assume that Va € A we have Pi(a) = Px(a) = pa.
Theorem 3. for a biased memoryless source, the joint complexity is

asymptoftically
2log 2
+ Q(log n)n + o(n),

where Q(x) is a small periodic function (with amplitude smaller than 107°)
which is nonzero only when the log p,. a € A, are rationally related, that is,

log pa/ log py € Q.

Chn=mn

Assume that Py (a) # Ps(a).
Theorem 4. Define k = min(swz)eng{(—sl — s2)} < 1, where s; and s,
are roots of

H(s1,82) =1 =) (Pi(a)) "(P2(a)) "2 = 0.

acA
Then
'r),"i F(Cl)F(Cz)
Chn = — 1 O l ’
| — <\/7TAH(01,C2)VH(01702) + Q(logn) + O(1/ log n))

where Q is a double periodic function.



Very Brief Sketch of Proof

1. Set P(a) = 1/|A| and then the kernel is

H(si,s0) = 1 — [A]LY p2.
acA

Define r(s2) = > ,cap;2 ANd L(s2) = log| 4 7(52).
2. Roots of H (s, s2) = 0 are

2tk
o —l _—
S1 og4/(r(s2)) + log (| A])

which are poles of C'(z, z) leading o

1 21k L(s)—s—2ikn /log(|A])
C , ~Y F —L TN F ° d
(2, 2) 2z‘7rlog|A|/§R 2 ( <S)+log<|A|>> (s)2 ’

(s)=co g

Integratfing over s = s, requires the saddle point method.



Saddle Point

3. The funcftion L(s) — s achieves it minimum at ¢, =: p is the dominant real
saddle point. Butf there is more . . .

p+

; 2nd
logr

j2n
logr
i 2nl

logr

4. The growth of C(z, z) is defined by

r = min{log 4 (r(s)) — s},

_i2TrDl

logr

_.ZHEIZ

logr

; 2no
logr

.= Jlogn

. j< =Jlogn

Infinitely Many Saddle Points:

3a. L(ce + it) is a periodic function with period 27 log v.
3b The saddle points are at cs + 27l / log v.

3c. The infinite saddle points defines

the fluctuating function Q.

JLle2)=ca — 5 \where

c2 = min arg,cg{log 4 (r(s)) — s},

where here s = so, andrecall L(s;) = log) 4 r(s2).

The factor 1/+4/logn comes from the saddle point approximation.

completes the sketch.

This



Classification of Sources

The growth of C,, ,, is:
e O(n) foridentical sources;
e O(n"/+/logn) for nonidential sources with k < 1.
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Figure 1. Joint complexity: (a) English text vs French, Greek, Polish, and
Finnish texts; (b) real and simulated texts (3rd Markov order) of English,
French, Greek, Polish and Finnish language.



That’s It

THANK YOU, SVANTE!



