String Complexity

Wojciech Szpankowski
Purdue University
W. Lafayette, IN 47907

June 1, 2015

Science of Information

NSF Science & Technology Center

Dedicated to Svante Janson for his 60 Birthday

Outline

1. Working with Svante
2. String Complexity
3. Joint String Complexity

Joint Papers

1. S. Janson and W. Szpankowski, Analysis of an asymmetric leader election
algorithm Electfronic J. of Combinatorics, 4, R17, 1997.

2. S. Janson, S. Lonardi, and W. Szpankowski, On Average Sequence
Complexity, Theoretfical Computer Science, 326, 213-227, 2004 (also
Combinatorial Pattern Matching Conference, CPM’04, Istanbul, 2004).

3. S. Janson and W. Szpankowski, Parfial Fillup and Search Time in LC Tries
ACM Trans. on Algorithms, 3, 44:1-44:14, 2007 (also, ANALCO, Miami,
2006).

4. A. Magner, S. Janson, G. Kollias, and W. Szpankowski On Symmetry of
Uniform and Preferential Attachment Graphs, Electfronic J. Combinatorics,
21, P3.32, 2014 (also, 25th International Conference on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithms
AOfA' 14, Paris, 2014).

Joint Papers

1. S. Janson and W. Szpankowski, Analysis of an asymmetric leader election
algorithm Electfronic J. of Combinatorics, 4, R17, 1997.

2. S. Janson, S. Lonardi, and W. Szpankowski, On Average Sequence
Complexity, Theorefical Computer Science, 326, 213-227, 2004 (also
Combinatorial Pattern Matching Conference, CPM’04, Istanbul, 2004).

3. S. Janson and W. Szpankowski, Partial Fillup and Search Time in LC Tries
ACM Trans. on Algorithms, 3, 44:1-44:14, 2007 (also, ANALCO, Miami,
2006).

4. A. Magner, S. Janson, G. Kollias, and W. Szpankowski On Symmetry of
Uniform and Preferential Attachment Graphs, Electfronic J. Combinatorics,
21, P3.32, 2014 (also, 25th International Conference on Probabilistic,
Combinatorial and Asymptotic Methods for the Analysis of Algorithms
AOfA’' 14, Paris, 2014).

Working with Svante is easy

Outline

1. Working with Svante
2. String Complexity
3. Joint String Complexity

Some Definitions

String Complexity of a single sequence is the number of distinct substrings.

Throughout, we write X for the string and denote by 1(X) the set of distinct
substrings of X over alphabet A.

Example. If X = aabaa, tThen
I(X) ={e,a,b,aa,ab, ba, aab, aba, baa, aaba, abaa, aabaa},
and |I(X)| = 12. Butif X = aaaaa, then
I(X) = {e, a,aa, aaa, aaaa, aaaaa},
and |I(X)| = 6.

The string complexity is the cardinality of I(X) and we study here the
average string complexity.

E[II(X)]] = > PX)I(X)].

XeAn

Suffix Trees and String Complexity

a b a a b a b a $
O O O @ O O O O O (1]
$ $
(8]
b a S
O 4]
a b a b a $
O O O O (3]
b a a b a b a S
O O O O {2]
b a $
O {5]
S
$

1 2 3 4 5 6 7 8 9
abaababas$

Non-compact suffix trie for X = abaababa and string complexity 1(X) = 24.

a b a ababas a ba ababas
$ $
(8] (8]
ababas ababas
b a ababa$ ba ababas
f2]

$ $

12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

abaababas$ abaababas$

String Complexity = # infernal nodes in a non-compact suffix tree.

Some Simple Facts

Let O(w) denote the number of times that the word w occurs in X. Then

[I(X)] = > min{l, O(w)}.

weA*

Since between any two positions in X there is one and only one substring:

_ (X[+D[X]
Z O(w) = 5 :

weA*

Hence

X 1) X
(X1 + DIXT >~ max{0, O(w) — 1}.
2 weA*
Define: C,:=E[[I(X)] | |X]|=mn] Then

(X)) =

Cn:(n21)n_

> D> (k=1)P(Ou(w) = k).

weA* k>2

We need to study probabilistically O,,(w): that is:

number of w occurrences in a text X generated a probabilistic source.

M N D :0dd Dismoyuedzs g jenboer :2809/812508.6

New Book on Pattern Matching

How do you distinguish a cat from a dog by their DNA
Did Shakespeare really write all of his plays?

Philippe Jacquet and
Wojciech Szpankowski

Pattern matching techniques can offer answers to these questions and to
many others, from molecular biology, to telecommunications, to classifyi
Twitter content.

(]
This book for researchers and graduate students demonstrates the
probabilistic approach to pattern matching, which predicts the performance #&
of pattern matching algorithms with very high precision using analytic 7’
combinatorics and analytic information theory. Part I compiles known P QI
M t I I .

results of pattern matching problems via analytic methods. Part II focuses on
.
From DNA to Twitter

smoyuedzs
pue jonboe(

applications to various data structures on words, such as digital trees, suffix
trees, string complexity and string-based data compression. The authors use
results and techniques from Part I and also introduce new methodology such
as the Mellin transform and analytic depoissonization.

More than 100 end-of-chapter problems help the reader to make the link
between theory and practice.

Philippe Jacquet i

lab in Computer Science in Fran

Internet OLSR p ol for mobile net
obability theor

of the department of Mathemat:
i of tt

U2lejA uJaiie] dndjeuy

In 2008 he launche
tion, and in 2010 }
nd Technol
of IEEE and an E

in 2010.

bul

CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

SBN 978-0-521-87608-7

OATIANYD

9 1780521"876087">,

qa

Book Contents

Chapter 1: Probabilistic Models

Chapter 2: Exact String Matching

Chapter 3. Constrained Exact String Matching
Chapter 4: Generalized String Matching

Chapter 5: Subsequence String Matching
Chapter 6. Algorithms and Data Structures
Chapter 7 Digital Trees

Chapter 8: Suffix Trees & Lempel-Ziv’'77

Chapter 9: Lempel-Ziv’'78 Compression Algorithm

Chapter 10: String Complexity

Some Results

Last expression allows us to write

c, = 21)” + E[S,] — E[L,)]

where E[S,] and E[L,| are, respectively, the average size and path length
in the associated (compact) suffix trees.

We know that

B[S, = +(n+U(logn)) + o(n),
E[L,] = = lzg W Ws(log n) + o(n),

where W(logn) and W,y(logn) are periodic functions (when the log p,.
a € A are rationdlly related), and where h is the enfropy rate. Therefore,

_ (n+ 1)n

Chn
2

- %(logn — 1+ Qo(logn) + o(1))

where Qo (x) is a periodic function.

Theorem from 2004 Proved with Bare-Hands

In 2004 Svante, Stefano and | published the first result of this kind for a
symmetric memoryless source (all symbol probabilities are the same).

Theorem 1 (Janson, Lonardi, W.S., 2004). Let C,, be the string complexity for
an unbiased memoryless source over alphabet A. Then

E(C,) = <n ;' 1) —nlog) 4 n—|—< -+ W + p1a;(log) 4 n)) n+0(y/nlogn)

where ~v =~ 0.577 is Euler’s consfant and
1 2735 \ o
Tr) = — 't —1-— e "IT
) = i 2 (1 57)

is a continuous function with period 1. |4 (x)| Is very small for small | A|:
[p2(2)] < 2-1077, |@s(z)| < 51077 [pa(z)] < 3-107"

Outline

1. Working with Svante
2. String Complexity
3. Joint String Complexity

Joint String Complexity

For X and Y, let J(X,Y) be the set of common words between X and Y.

The joint string complexity is
[J(X,Y)| = [I(X) N I(Y)

Example. If X = aabaa and Y = abbba,then J(X,Y) = {¢, a, b, ab, ba}.

Goal. Estimate
Jnm = E[[J(X,Y)]]

when | X| =nand |Y| = m.

Joint String Complexity

For X and Y, let J(X,Y) be the set of common words between X and Y.

The joint string complexity is
[J(X,Y)| = [I(X) N I(Y)]

Example. If X = aabaa and Y = abbba,then J(X,Y) = {¢, a, b, ab, ba}.

Goal. Estimate
Jnm = B[J(X,Y)]]
when | X| = nand |Y| = m.

Some Observations. For any word w € A*

[J(X,Y)| = D min{l,Ox(w)} - min{1, Oy (w)}.

weA*

When | X| = nand |Y| = m, we have

Jom =BIJX, V) —1= 3 P(OL(w) > 1)P(O2(w) > 1)
weA*—{e}

where O! (w) is the number of w-occurrences in a string of generated by
source: = 1,2 (i.e., X and Y) which we assume to be memoryless sources.

Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Q' (w) be the number of strings for which w is a prefix when the n strings
are generated by a source i = 1, 2 define

Cnm = Z P(qum(w) > 1)P(an(w) > 1)
weA*—{e}

Theorem 2. There exists e > 0 such that
Jnm — Cpm = O(min{n, m})

for large n.

Independent Joint String Complexity

Consider two sets of n independently generated (memoryless) strings.

Let Q' (w) be the number of strings for which w is a prefix when the n strings
are generated by a source i = 1, 2 define

Com = >, P(Q,(w) > 1)P(Q, (w) > 1)
weA*—{e}

Theorem 2. There exists e > 0 such that
Jnm — Cpm = O(min{n, m})
for large n.

Recurrence for C,, ,,

Crm =143 3> (1) Pr(@) (1 = Pi(@)" " (7)) Pa(a)’ (1 = Pa(@))"™ “Ci

a€A k>0

with Co.m = Cho = 0.

Generating Functions, Mellin Transform, DePoissonization . ..

Poisson Transform. The Poisson transform C'(z1, z2) of C,, , IS

21 %y o122

C'(21722) — Z Cnm

| |
n,m>0 T

which becomes the functional equation after summing up the recurrence:

C(z1,22) = (1 —e "H)(1 —e *2) + Z C (Pi(a)z1, Pa(a)z2).
acA

Clearly, n!m!C,, ,, = [27][25']C (21, z2)e1772,

Generating Functions, Mellin Transform, DePoissonization . ..

Poisson Transform. The Poisson transform C'(z1, z2) of C), ., IS

212y oA

C'(21722) — Z Cnm

| l
n,m>0 T

which becomes the functional equation after summing up the recurrence:

C(z1,22) = (1 —e "H(1 —e ™2) + Z C (P1(a)z1, Pa(a)zs).
acA

Clearly, n'm!C,, ,, = [27][25']C (21, z2)e1772,

Mellin Transform. Two dimensional Mellin fransform is defined as
C*(s1,82) = / / C(z1, z2)z11 1z;2 1dz1dz2.

From the above functional equation we find for —2 < R(s;) < —1

) B 1 S1 S92 §182
C"(s1,52) = ['(s1)[(s2) (H(S1, 52) * H(—1, s5) " H(s1,—1) " H(—-1, —1)>

where the kernel is defined as

H(s1,82) = 1= > (Pi(a)) "H(Pa(a)) "2

acA

Finding C,, ,,

Here we only consider m = nand z; = 2z, = z.

To recover C,, ,, we first find the inverse Mellin

1
C(z,z) = — > / / C*(s1,52)z "1 "2dsidss
(207) Jr(s1)=c1 JR(s9)=c;

which turns out to be

2
0(27 Z) _ (L) / / F(Sl)F(82)2_81_82d81d82 + O(Z_M),
2um R(sp)=p1 J R(sg)=py H (51, 52)

forany M > 0 as z — oo in a cone around the real axis.

The final step to recover
Cpm ~ C(n,n)

is to apply the two-dimensional depoissonization.

Main Results

Assume that Va € A we have Pi(a) = Px(a) = pa.
Theorem 3. for a biased memoryless source, the joint complexity is

asymptoftically
2log 2
+ Q(log n)n + o(n),

where Q(x) is a small periodic function (with amplitude smaller than 107°)
which is nonzero only when the log p,. a € A, are rationally related, that is,

log pa/ log py € Q.

Chn=mn

Assume that Py (a) # Ps(a).
Theorem 4. Define k = min(swz)eng{(—sl — s2)} < 1, where s; and s,
are roots of

H(s1,82) =1 =) (Pi(a)) "(P2(a)) "2 = 0.

acA
Then
'r),"i F(Cl)F(Cz)
Chn = — 1 O l ’
| — <\/7TAH(01,C2)VH(01702) + Q(logn) + O(1/ log n))

where Q is a double periodic function.

Very Brief Sketch of Proof

1. Set P(a) = 1/|A| and then the kernel is

H(si,s0) = 1 — [A]LY p2.
acA

Define r(s2) = > ,cap;2 ANd L(s2) = log| 4 7(52).
2. Roots of H (s, s2) = 0 are

2tk
o —l _—
S1 og4/(r(s2)) + log (| A])

which are poles of C'(z, z) leading o

1 21k L(s)—s—2ikn /log(|A])
C , ~Y F —L TN F ° d
(2, 2) 2z‘7rlog|A|/§R 2 (<S)+log<|A|>> (s)2 ’

(s)=co g

Integratfing over s = s, requires the saddle point method.

Saddle Point

3. The funcftion L(s) — s achieves it minimum at ¢, =: p is the dominant real
saddle point. Butf there is more . . .

p+

; 2nd
logr

j2n
logr
i 2nl

logr

4. The growth of C(z, z) is defined by

r = min{log 4 (r(s)) — s},

_i2TrDl

logr

_.ZHEIZ

logr

; 2no
logr

.= Jlogn

. j< =Jlogn

Infinitely Many Saddle Points:

3a. L(ce + it) is a periodic function with period 27 log v.
3b The saddle points are at cs + 27l / log v.

3c. The infinite saddle points defines

the fluctuating function Q.

JLle2)=ca — 5 \where

c2 = min arg,cg{log 4 (r(s)) — s},

where here s = so, andrecall L(s;) = log) 4 r(s2).

The factor 1/+4/logn comes from the saddle point approximation.

completes the sketch.

This

Classification of Sources

The growth of C,, ,, is:
e O(n) foridentical sources;
e O(n"/+/logn) for nonidential sources with k < 1.

x10*
2500 T T T 25 T T
EnRealOverFrSim EnRealOverEnSim
EnRealOverGrSim FrRealOverFrSim
EnRealOverPISim GrRealOverGrSim
2000 - EnRealOverFnSim 2r PIRealOverPISim
> > FnRealOverFnSim
= =
= X
) 9 .
a 1500 o "
€ €
o @]
(©] o |
= 1000} _ I
c £ .
S S
” > /
500 0.5} / =
0 1 1 1 1 1 1 1 1 1 0 ~ 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Text length (n) Text length (n)

(@) (b)

Figure 1. Joint complexity: (a) English text vs French, Greek, Polish, and
Finnish texts; (b) real and simulated texts (3rd Markov order) of English,
French, Greek, Polish and Finnish language.

That’s It

THANK YOU, SVANTE!

